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Signal detection statistics of stochastic resonators
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We consider the signal detection performance of networks of coupled overdamped nonlinear dynamic ele-
ments driven by a weak sinusoidal signal embedded in Gaussian white noise. In the ‘“stochastic resonance”
operating regime, (1) the detection performance exhibits a maximum reflecting the maximum in the signal-to-
noise ratio, and (2) coupling significantly enhances the detection performance over that of a single element.
Coupling-induced linearization allows the nonlinear system to approach the performance of the linear system

which is optimal for our signal detection problem.

PACS number(s): 05.40.+j, 02.50.—r1, 87.10.+e¢

Optimizing the output signal-to-noise ratio (SNR) in non-
linear dynamic systems via the “stochastic resonance” (SR)
phenomenon has received considerable attention in the past
decade [1,2]. More recently, attention has focussed on SR
effects in the response of coupled bistable elements interact-
ing via linear [3—5] or nonlinear [6,7] couplings, the latter
having potential applicability in the neurosciences. However,
the study of SR in terms of important signal processing mea-
sures other than SNR has received limited attention [8]. In
this paper we consider the signal detection statistics of
coupled arrays of nonlinear dynamic elements. We show that
these statistics follow the SNR’s behavior: they exhibit a
maximum as a function of noise, and coupling significantly
enhances signal detection over that achieved by a single el-
ement.

As a concrete example, we consider a coupled array of
overdamped nonlinear dynamic elements, each subject to the
same external “input,” a temporal sine wave of amplitude
q in a Gaussian white noise background of one-sided power
spectral density D/ (in terms of angular frequency):

N
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- IT-’r 2 Jjtanhu;+q sinwt+\VDE(t), (1)
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where &(¢) is Gaussian white noise with mean zero and au-
tocovariance (&(2)&(t+ 7))=48(7). We designate u(¢) as
the array’s “output.” Systems of the form (1) have been used
to describe connectionist-type electronic neural networks [9].
In such networks, u; denotes the ith neuron’s activation func-
tion (membrane potential), and C;, R; denote the neuronal
input capacitance and transmembrane resistance, with the
coupling coefficients (synaptic efficacies) J;; usually deter-
mined via a “learning rule.” Here, we shall choose the cou-
plings to maximize the output SNR and signal detection sta-
tistics [7].

The “reference” element, i =1, has bistable dynamics ap-
proximated by highly damped motion in a double-well po-
tential. At very low noise levels, the state point oscillates at
the bottom of the potential wells for very long times, with
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very infrequent switching between wells. The output SNR
approaches the input SNR because the bottom of each poten-
tial well is approximately parabolic, rendering the system’s
response nearly linear. As the noise level is increased, the
response becomes more strongly nonlinear and the output
SNR drops. However, as we approach the critical noise level,
the time required for the state point to hop between the wells
(the Kramers time) approaches half the period of the driving
sine wave, rates for switching due to the signal and due to
the noise coincide, and the output SNR reverses direction
and rises to a local maximum (the SR effect). At still higher
noise levels, the effect of the potential barrier gradually di-
minishes, the response becomes less strongly nonlinear, and
the output SNR follows the input SNR downward.

To determine whether the SR effect has signal processing
applications, we cannot rely on SNR alone. For example, a
nonlinear signal processor may output a signal which has
infinite SNR but is useless because it has no correlation with
the input signal. For signal estimation, relevant measures are
mean square error or Bayesian tests [10]. For signal detec-
tion, one must consider detection statistics: probability of
detection and probability of false alarm. Probability of detec-
tion is the probability that the system will report that a signal
is present when in fact a signal is present. Probability of false
alarm is the probability that the system will report that a
signal is present when in fact a signal is not present. Such
statistics are summarized in a plot of detection probability
versus false alarm probability known as the receiver operat-
ing characteristic (ROC).

As a test case, we choose a well understood signal pro-
cessing task: detecting a sine wave signal of known fre-
quency and unknown phase in the presence of Gaussian
white noise. For this case, one can prove that the optimal
detector consists of a linear filter followed by a “decision
circuit” [10]. The linear filter measures the power in a nar-
row frequency band of width Aw centered on the known
signal frequency w. The decision circuit compares the filter’s
output to a threshold. If the filter’s output exceeds the thresh-
old, then the system’s decision is that the sine wave was
present. A low threshold leads to high probability of detec-
tion and high probability of false alarm, while a high thresh-
old leads to low probability of detection and low probability
of false alarm. ROC curves for such a detector are actually
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FIG. 1. Probability of detection vs noise strength D, for a fixed
probability of false alarm of 0.1. Tightly spaced dashes: output of a
single nonlinear element driven by the input signal. Loosely spaced
dashes: output of coupled system (N=2). Dotted curve: input sig-
nal. Solid curves: theoretical prediction. System parameters:
R;=0.0186916, C;=1, J;=216, J,=50, J;=—50, A=8§,
w=1.22522, and Aw=w/32.

parametric plots showing the detection and false alarm prob-
abilities as parametric functions of the threshold.

We want to understand how SR in our nonlinear coupled
array affects signal detection. Our detector system therefore
consists of the coupled array (1) followed by the aforemen-
tioned optimal detector.

To measure our system’s detection performance using nu-
merical simulation, we begin by computing the system’s out-
put SNR and detection statistics via numerical integration of
(1) (using the modified Heun method [11]) followed by fast
Fourier transform (FFT) of the resulting time series. We de-
fine the SNR as the ratio of the signal power to the noise
power in the “signal bin” of the FFT, comprising the fre-
quency range (0 —Aw/2,w+ Aw/2). We estimate the noise
power in the signal bin by taking an average of the total
power in neighboring bins several bins away (these bins con-
tain noise only). We then subtract this estimated noise power
from the total power in the signal bin to obtain the signal
power. We use a small time step, At=(27/w)/8192, in order
to generate noise which has a flat spectrum out to a very high
frequency. To avoid aliasing we maintain this sampling rate
throughout our computations. To compute the ROC, we re-
peatedly record the power in the signal bin, both with and
without the sinusoidal driving term present, forming power
probability density functions (PPDF’s) for “signal” or “no
signal.” Using these statistics, the probability of detection
Py, for any given threshold power value may be computed by
measuring the integral of the “signal”’ PPDF from the thresh-
old power value to infinity. Similarly, the probability of false
alarm Ppg, equals the same integral of the “no signal” PPDF
[10].

Figure 1 shows Pp vs noise strength D for a fixed
Pga=0.1, the threshold being adjusted for each value of D
to give the desired Pg, . Curves are shown for the output of
a single driven SR element (tightly spaced dashes), the out-
put of an element coupled with a second element (N=2
array, loosely spaced dashes), and the input signal (dotted
curve). The solid curves represent approximate theoretical
predictions of Pp based on the output SNR measured in the
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FIG. 2. ROC curves (probability of detection vs probability of
false alarm). Tightly spaced dashes: output of a single nonlinear
element driven by the input signal. Loosely spaced dashes: output
of coupled system (N=2). Dotted curve: input signal. Solid curves:
theoretical prediction. Insets: SNR vs noise strength D, with the
vertical line indicating the value of D used for the ROC’s in that
panel. System parameters as in Fig. 1.

numerical simulations [see Eq. (2) below]. The broken
curves represent direct measurements of Pp from the same
numerical simulations. The figure illustrates the “‘resonance”
in signal detection statistics that corresponds to the SR maxi-
mum in the SNR. It also shows that using coupled elements
brings the performance closer to that of the ideal linear sys-
tem. Note that a plot of Py, vs D for a fixed P would look
approximately like an inverted Fig. 1.

Figure 2 shows probability of detection vs probability of
false alarm. Each of the four panels shows detection statistics
for a different noise strength D. The insets show SNR vs
D, with the vertical line indicating the value of D used for
the ROC:s in that panel. As in Fig. 1, solid curves represent
approximate theoretical predictions and broken curves repre-
sent direct measurements. The figure illustrates a significant
enhancement in signal detection for the N=2 system
(loosely spaced dashes) compared to the single element
(tightly spaced dashes). As expected, signal detection is
highest for the input signal (dotted curve). If the transducer
which picks up the input signal has perfectly linear response,
then it is ideal for our task of detecting a sine wave in Gauss-
ian white noise. If the transducer has nonlinear, bistable re-
sponse, then coupling it into an array can improve signal
detection. Indeed, there exist special cases for which the hy-
perbolic tangent terms in (1) identically cancel, giving the
system a perfectly linear response to its input. For example,
this occurs for a pair of identical elements (N=2, C;=C,,
R,=R,, J{,=J,,) with couplings J,=J,;= —J; and iden-
tical initial conditions. :

In general, the solution of our system (1) must be found
numerically; however, an approximate analytical formulation
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for the response u of the reference element may be obtained
under the following conditions (for details see [7]). The bath
elements (i>1) must react at a rate much greater than the
rate of change of the reference element or the forcing signal.
Furthermore, the cross-coupling and forcing terms should
not be so large that they overwhelm the basic monostable or
bistable dynamics of the elements. This allows us to use
Haken’s slaving principle [12] to reduce the many-body sys-
tem to an equivalent one-body system. In the reduced one-
body system, the rate at which probability equilibrates at the
bottom of the potential wells must be much greater than the
rate of the forcing, and the modulation of the potential bar-
rier height must be much less than the noise spectral density,
which in turn must be much less than the unmodulated po-
tential barrier height. These conditions allow the use of per-
turbation theory in deriving the theoretical expressions [1]
for the power spectral density of the reference element’s mo-
tion, from which we obtain the output SNR.

The ROC curves can be predicted from the output SNR.
Since we do our signal detection by comparing the power in
the signal bin of the FFT to a threshold, and since one bin of
the FFT covers a very narrow range of frequencies, the noise
spectrum across the bin and in the vicinity of the bin looks
approximately constant. Therefore we can approximately
model the output of our nonlinear array (which supplies the
input to the optimal detector) as a sine wave in white noise
with an SNR equal to the array’s output SNR, R. For this
input, the optimal detector’s probability of detection is [10]

Pp=0Q(\2R,J=2 InPyg,), 2)

where

24 42
) )Io(az)dz 3)

Q(a,xa)zf;z exp( -

is Marcum’s Q function, and [, is the modified Bessel func-
tion of the first kind and order zero.

This approximating model gives highly accurate results
except in a transitional noise range where both intra- and
interwell motion contribute significantly to the output SNR.
On the SNR vs D plots, this is the regime in the vicinity of
the SNR minimum at moderately low noise strength. The
response is most strongly nonlinear in this regime. For ex-
ample, in this regime turning on the sine wave signal (with
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input noise strength held constant) causes a large increase in
both signal and noise output power. In this case, calculations
based on just the final value of the output SNR (with the sine
wave turned on) underestimate the signal detection perfor-
mance.

To check whether stochastically resonant and coupling-
enhanced signal detection relies heavily on the specifics of
our SR system, we can consider a quite different system
consisting of a chain of overdamped Duffing oscillators
[4,8]:

di=ku;—k'ul+e(u; 1 +u;_—2u;)+q sinwt+ \/Bgi(t)
(4)

(with free boundary conditions imposed on the chain). This
system (4) differs from the previously considered system (1)
in that (a) the noise is local to each element, representing
internally generated rather than externally applied noise, (b)
the coupling is local, (c) the coupling is linear, and (d) a
cubic term is used for the nonlinearity rather than the hyper-
bolic tangent used in the neuron system. Despite these dif-
ferences, the output SNR and ROC curves for this system are
qualitatively identical to the previous system. Note, however,
that the input SNR for this system is infinite because the
external input is a noise-free sine wave signal which then
gets mixed with internally generated noise. Also, in certain
circumstances systems with linear vs nonlinear coupling and
global vs local noise do differ qualitatively [7,8].

In summary, we emphasize that (1) the ROC curves
mimic the output SNR optimization due to SR, and (2) one
can improve the signal detection performance of a stochastic
resonator by coupling it into an array of resonators. Away
from the SNR minimum, modeling the output of the resona-
tor or array as a sine wave in locally white Gaussian noise
permits accurate prediction of signal detection performance.
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